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Nonlinear Wave Propagation in a Disordered Medium
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In this paper we consider the problem of solitary wave propagation in a weakly
disordered potential. Through a series of careful numerical experiments we have
observed behavior which is in agreement with the theoretical predictions of
Kivshar et al., Bronski, and Gamier. In particular we observe numerically the
existence of two regimes of propagation. In the first regime the mass of the
solitary wave decays exponentially, while the velocity of the solitary wave
approaches a constant. This exponential decay is what one would expect from
known results in the theory of localization for the linear Schrodinger equation.
In the second regime, where nonlinear effects dominate, we observe the
anomalous behavior which was originally predicted by Kivshar et al. In this
regime the mass of the solitary wave approaches a constant, while the velocity
of the solitary wave displays an anomalously slow decay. For sufficiently small
velocities (when the theory is no longer valid) we observe phenomena of total
reflection and trapping.

KEY WORDS: Nonlinear Schrodinger equation; nonlinear scattering; disor-
dered media.

I. INTRODUCTION

For many years the effect of disorder and the phenomenon of localization
has been one of great interest in statistical physics. For many linear equa-
tions, such as the Schrodinger equation with a random potential, the effects
of the disordered potential are well understood, both at a physical level
and a rigorous mathematical level. One natural generalization is to con-
sider the effects of such a disordered potential on a nonlinear equa-
tion.(3,6-8,15,14) There are a number of physical situations in which the
study of such a nonlinear evolution is natural. For instance if one considers
the problem of many interacting particles moving in a common disordered
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medium, then under the usual mean field approximation (Hartree-Fock
approximation) the evolution is governed by a nonlinear Schrodinger type
equation. In the case where the particles are in one dimension, and interact
via a delta function interaction, the Hartree-Fock equation is exactly the
one dimensional cubic nonlinear Schrodinger equation. The cubic NLS
also arises in fiber optics, and if we assume that, due to manufacturing
variations, the fiber properties (such as group velocity dispersion) vary ran-
domly along the length of the fiber, a random NLS is an extremely interest-
ing equation to study.

The model which we will consider in detail in this paper is that of a
single NLS solitary wave propagating through a medium consisting of ran-
domly placed scatterers, which may be modelled by delta functions or some
smooth but rapidly decaying function. Such a model was first analyzed by
Kivshar, Gredeskul, Sanchez and Vasquez(13) using perturbation theory
based on the inverse scattering transform. This analysis was later extended
by the author(2) and by Gamier.(9,10) The basic prediction of these calcula-
tions is that, for an NLS solitary wave propagating in a disordered poten-
tial there are two distinct regimes of behavior, which depend on the initial
value of a, the ratio of the amplitude of the solitary wave to the velocity
of the solitary wave.

For sufficiently small a the mass of the solitary wave decays to zero
exponentially as the solitary wave propagates into the medium, with the
lost mass being scattered into dispersive radiation modes. The velocity of
the solitary wave, on the other hand, approaches a constant. For large
enough a, however, it is found that the mass of the solitary wave
approaches a constant after a large number of scattering events, while the
velocity decays to zero very slowly (like l n - 1 ( N ) , where N is the number
of scattering events). Further these two asymptotic parameter regimes are
consistent, in the following sense—if a is small then a decreases during a
scattering event, while a increases during a scattering event if a is initially
large. However the theory is not valid for small velocities, when the kinetic
energy of the solitary wave is comparable in size to the height of the disor-
dered potential. In this parameter regime there exists the possibility of total
reflection of the solitary wave, and trapping phenomena. Since the velocity
decays to zero in the strongly nonlinear regime, we expect that such
phenomena will eventually be important.

This formal calculation is particularly interesting in light of the conjec-
ture of Frohlich, Spencer and Wayne(8) that solutions to the nonlinear
Schrodinger equation localize for sufficiently small initial data. The above
formal calculation, if correct, implies that the assumption of small initial
data is necessary, and for large data there are states which do not localize
(at least on the time-scales where the theory is expected to be valid). Thus
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it is interesting to attempt to verify the formal asymptotics through numeri-
cal simulations. In this paper we present detailed numerical calculations
which verify this theory. Both of the above mentioned regimes are observed
in the numerical experiments, and the observed behaviors are in good
qualitative agreement with the predictions of the theory.

II. BACKGROUND

In this section we review the theory of solitary wave propagation in a
disordered medium. The particular model of interest, which was first
studied by Kivshar et al.(13) and later extended by the author(2) and
Gamier,(9,10) is that of a solitary wave or solitary wave propagating in a
weak disordered potential made up of many randomly placed "copies" of
a basic scatterer V(x),

where the locations xi and the strengths yi are random. (In the original
works the strengths of the scatterers were fixed. However the extension to
the case where the strengths of the scatterers are chosen randomly is
relatively straightforward.) The initial condition is taken to be a single inci-
dent solitary wave with mass aI and velocity bI:

which is an exact solution in the case where e = 0.
This equation has already been partially non-dimensionalized by res-

caling x so that the dispersion coefficient (which has units length2/time) is
unity, and rescaling the amplitude so that the coefficient of the nonlinearity
is equal to two. It is interesting fully nondimensionalize the equation since
the dimensionless parameters associated with the problem provide a great
deal of insight into what effects are expected to be important. This non-
dimensionalization is most easily accomplished by making the rescaling

After this resealing the equation becomes



There are three dimensionless parameters. The first is the ratio e/b2
I. This

can be thought of as the ratio of the height of the background potential to
the kinetic energy of the soliton. In this paper this quantity is our perturba-
tion parameter, and is always assumed to be small, so that the kinetic
energy of the soliton is much greater than the height of the barrier. Basi-
cally this is excluding effects like capture or reflection of the soliton by the
background potential.

The second parameter is a2 = a2/b2. This can be thought of as the ratio
of the binding energy of the soliton to the kinetic energy of the soliton, and
provides a measure of the importance of nonlinearity in the problem—of
how tightly bound the soliton is. It is in this parameter that the change in
behavior occurs—for a small (a loosely bound soliton) we find an exponen-
tial decay of the soliton mass, while for a sufficiently large (a tightly bound
soliton) there is asymptotically no decay of the mass.

The third dimensionless parameter is the product of bI times some
measure of the average length scale associated with potential V. A more
careful analysis (see previous work by the author(2)) shows that the width
of the strip of analyticity is the correct measure of the average length scale
of V. This parameter does not play a particularly interesting role in the
theory, and for the most part makes only quantitative and not qualitative
changes in the results. The exception is when the width of the strip of
analyticity diverges, and V has stronger smoothness properties. This will be
discussed further in a later section.

If the potential is weak, e << b2, then interacting with the scatterer the
solution will look like a soliton with slightly different mass and velocity,
plus some dispersive radiation. Assuming that the case of a single weak
scatterer it is possible to use perturbation theory to calculate the amount
of mass scattered from the solitary wave into dispersive radiation. This
gives an expression for the mass and velocity of the transmitted solitary
wave in terms of the mass and velocity of the incident solitary wave:
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Here aI and bI are the asymptotic mass and velocity of the solitary wave
before the scattering event, while aT and bT are the asymptotic mass and
velocity of the solitary wave after the scattering event. The change of mass
of the solitary wave is due to the fact that mass is transferred from the
solitary wave into dispersive radiation modes. The total mass, solitary wave
mass together with radiation mass, is conserved. There is also an 0(e)
change in the solitary wave velocity during the scattering event which
decays to zero as the solitary wave moves away from the scatterer and thus



where B(a.) is a function which is of sub-exponential growth for large £.
(A similar though more complicated expression exists for a general poten-
tial V(x).) For large Z the solution to this differential equation behaves like

where the continuum variable Z is proportional to e2N, with N the number
of scattering events.

For the analysis it is somewhat more natural to rewrite this system in
terms of b and a = a/b. It is found that there are two possible asymptotic
behaviors, depending on the size of a. For sufficiently large a and
V(x) = S(x) we have

Again the change in the solitary wave mass and momentum are due to the
mass/momentum which is carried by the dispersive radiation field. Taking
the obvious continuum limit of this discrete dynamical system leads a set
of ordinary differential equations for a, b as a function of the number of
scattering events,

does not effect the asymptotic velocity of the solitary wave. This result is
somewhat like a "collective coordinate" type approach, but it includes the
loss of mass and velocity due to the shedding of dispersive radiation. This
kind of radiative damping is quite difficult to include in a collective coor-
dinate type ansatz, and is usually neglected. This is an important distinc-
tion, since it is exactly this slow decay of the soliton parameters due to the
shedding of dispersive radiation which leads to the existence of the two
regimes of propagation.

Under the additional assumption that the scatterers are well-separated,
that the average distance between scatterers is much greater than a solitary
wave width, the map giving the change in soliton parameters due to a
single scatterer can be iterated to give a discrete dynamical system relating
the solitary wave mass/velocity after the nth scattering event to the solitary
wave mass/velocity after the (n+ 1)th scattering event:

999Nonlinear Wave Propagation in a Disordered Medium



1000 Bronski

which implies that the velocity b(Z) decays like

and the mass a(Z) approaches a constant value. Interestingly the exact
form of B(a.) does not matter for the leading order asymptotics, as long as
B(a.) is sub-exponential, though the form of B does change the next order
corrections; A similar logarithmic behavior holds for any V(x) which is
analytic in some strip about the real axis when analytically continued into
the complex plane. For potentials with stronger analyticity properties, for
instance a V(x) which is entire, a grows more slowly than logarithmically
while the velocity decays more slowly than I n - 1 .

In the opposite regime, when a is sufficiently small, the behavior is
very different. In this limit

The exponential decay of a(Z), a(Z) is, of course, what one would expect
from consideration of the linear problem.

Notice that the large a approximation is consistent in the sense that,
if a is initially large then a increases during a scattering event—the problem
in some sense becomes more nonlinear after many scattering events.
Similarly if a is sufficiently small then a decreases during a scattering event.
Note, however, that in the first regime the velocity b is predicted to decay
to zero. The perturbation argument used to derive these equations only
holds when e/b2 << 1. Since b ->0 this approximation will eventually break
down. When the kinetic energy of the solitary wave is comparable to the
height of the potential there arises the possibility of a whole host of new
phenomenon, including capture of and total reflection of a solitary wave.
We actually observe these phenomena in the numerical simulations.

For more details on the formal derivations of these results we refer the
interested to the papers of Kivshar et al.,(13) Gamier(10,9) and the author.(2)

The purpose of this paper is to present a series of numerical simulations of
the full partial differential equation which are intended to provide evidence
in support of the above theory. By doing these computations in a sliding
"window" which moves with the solitary wave we are able to simulate
many thousands of solitary wave/scatterer collisions in a computationally
inexpensive way. This allows us to observe quite clearly the dramatic



and represents the same solution in a coordinate system moving with
velocity 2v. The numerical experiments were performed in a Galilean
reference frame which was moving with and centered on the solitary wave.
The instantaneous center of mass and center of mass velocity were cal-
culated at a fixed time using the representations

else satisfies the NLS equation

then i^ defined by

where, as in the previous section, the strengths of the scatterers y, and the
locations of the scatterers x, were chosen from a uniform random distribu-
tion. The locations x,- were distributed on [0, L], and the strengths yi were
distributed on [ — 1, 1].

The nonlinear Schrodinger equation, like the Schrodinger equation, is
Galilean invariant—if l satisfies the NLS equation

change in behavior as the ratio of the incident mass to the incident velocity
is varied. When the ratio of the incident mass to the incident velocity is
small we observe an exponential decay of the mass, as one would expect
from consideration of the linear problem. When this ratio is sufficiently
large, so that nonlinear effects are important, we find a new regime of
propagation, where the mass of the solitary wave approaches a constant
and the velocity displays an anomalously slow decay.

III. NUMERICAL EXPERIMENTS

A. The Numerical Method

In this section we present some numerical simulations of the following
perturbed NLS equation,
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and

and a Galilean transformation and a translation were performed to move
to the coordinate system centered on and moving with the center of mass
of the pulse. Unfortunately the center of mass velocity is not exactly con-
stant, due to the presence of the perturbing potential, and thus the soliton
will slowly drift away from the center of the computational domain. When
the center of mass has drifted a prescribed distance from the center of the
computational domain the program calculates a new center of mass and
center of mass velocity and performs a Galilean transformation to this new
moving frame. This periodic updating of the reference frame would not, of
course, be necessary if the perturbations had been absent. However since
the change in the velocity of the solitary wave is small, due to the smallness
of the perturbation, this updating of the Galilean frame need not be done
every time step, and is computationally inexpensive.

In the coordinate system moving with velocity VCOM, the instan-
taneous center of mass velocity, and centered on the solitary wave location
the perturbed NLS equation becomes

In this representation the solitary wave remains fixed, and the perturbing
potential is time-dependent. This is a great savings in computational effort,
since it becomes possible to work on a computational domain of fixed size,
and compute only in this domain. Had we worked in a fixed computational
domain we would have had to take a computational domain at least as
wide as the total distance travelled by the solitary wave. For long time runs
this would be extremely computationally expensive—in most runs the full
domain is 218=2.6 x 105 points. By working in the Galilean reference frame
we are able to perform this computation with 256 or 512 points which
move along with the solitary wave. This scheme basically the same as the
one employed by Knapp [14] in some very interesting work on a similar
solitary wave scattering problem. Note, however, that the experiments by
Knapp are in a very different parameter regime. In the present work we are
primarily interested in the strongly nonlinear regime, which is not
addressed in the work of Knapp.

The numerical solutions were calculated using a split-step pseudo-
spectral code. The linear step, satisfying



In all experiments the width of the computational domain was chosen to
be sufficiently large that the damping of the solitary wave can be neglected,
and the damping affects only the dispersive radiation.

The scatterers V(x) were, unless otherwise noted, taken to be hyper-
bolic secants. The width of the scatterers was comparable to but smaller
than the width of the incident solitary wave.

In these experiments the computational domain was taken to be
[ — 30, 30]. The solitary wave parameters are in the range a, b e [0.5, 1.5].
The computational domain is discretized into 256 or 512 points, so Ax is
in the range 0.125 to 0.25. The total time of integration is between 1.5 x 104

and 6 x 104, and the number of time-steps between 1.5 x 106 and 6 x 106, for
a At of approximately 0.01.

B. The Weakly Nonlinear Regime

This experiment is conducted for a solitary wave with incident a below
the critical value of a. The mass of the incident solitary wave was 1.5, as
was the incident velocity, giving a = 1. In this regime the theory predicts
that the mass of the solitary wave should decay to zero exponentially. The
velocity, on the other hand, is expected to approach a constant. This is to
be expected from consideration of the linear problem—in linear scattering
some mass is reflected during scattering from a potential, but the
asymptotic velocity (wavenumber) is not changed.

The first figure (Fig. 1a, b) shows the perturbing potential for the first
series of numerical experiments. The potential, which is supported on

was computed using a fourth order ODE solver. The infinite line boundary
conditions were simulated by adding a small imaginary part to V(x, t) sup-
ported in a strip of width Labs near the boundaries, to damp outgoing
radiation. The absorbing function was taken to be

was computed using a standard FFT package, while the nonlinear step,
satisfying

1003Nonlinear Wave Propagation in a Disordered Medium



1004 Bronski



[0, 61440], is made up of 1.8 x 105 copies of a single scatterer distributed
randomly throughout the medium. This potential is discretized into 262144
points, resulting in Ax = 2. Again the actual computations are carried out
on a computational "window" of 256 gridpoints which tracks the center of
mass of the solitary wave.

The next graphs (Fig. 2) show the mass and velocity of the solitary
wave as a function of time. The computational domain is chosen to be wide
enough that the decay of the solitary wave part of the solution due to the
absorbing boundaries can be neglected, and thus the decay of the mass
represents the mass lost to dispersive radiation. The decay of the solitary
wave mass to zero is apparent. The solid line represents a least squares fit
to a exponential profile, and shows good agreement to the mass profile for
large times. Again this exponential decay of the mass is what one would
expect from the linear theory. It is also apparent that the velocity quickly
approaches a constant, as predicted by the theory. The "oscillations" in the
graph of the velocity are due to the fact that the velocity changes to order
e while it is interacting with the scatterer. However there is no net change
in the velocity to order e after the interaction—the velocity of the solitary
wave before it interacts with the scatterer is differs from the velocity of the
solitary wave after it interacts with the scatterer at O(e2). It is this O(e2)
loss in velocity which is responsible for the drift of the mean velocity
downwards. This plot is in good agreement with the theory, which predicts
that the solitary wave velocity would approach a constant after a large
number of scattering events (long time).

This exponential decay of the solitary wave mass seems to provide
evidence in support of the conjecture of Frohlich, Spencer and Wayne(8)

that solutions of the random nonlinear Schrodinger equation localize for
sufficiently weak nonlinearity.

The next plot (Fig. 3) is a detail from the graph of solitary wave
velocity vs. time in the previous figure (Fig. 2). Here we see the O(e)
changes in the velocity during the scattering event (the velocity increases
for interactions with attractive potentials and decreases during interactions
with repulsive potentials. In addition we can also see the slow O(e2) drift
of the velocity, as predicted by the theory.

Lastly Fig. 4 shows the alpha parameter, which is the ratio of the mass
to the velocity. This parameter is, in a sense, a measure of the nonlinearity
of the problem. As in the previous two plots this parameter shows an
exponential decay for long times, in agreement with the theory. This
illustrates the interesting (and non-obvious) prediction that, if the non-
linearity is initially sufficiently small it becomes less important after a large
number of scattering events.
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Fig. 3. Detail of plot of velocity—weakly nonlinear regime.

Fig. 4. Alpha parameter as a function of time—weakly nonlinear regime.
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C. Experiment 2—The Strongly Nonlinear Regime

This experiment is conducted for a solitary wave with incident a above
the critical value, so that the solitary wave is in the strongly nonlinear
regime. Again the theory predicts that the mass will approach a constant
after a large number of scattering events, while the velocity will decay to
zero extremely slowly (like ln - 1 (Z) , where Z is a measure of the number
of scattering events.) This behavior is confirmed by the numerical
experiments.

This experiment was conducted using a incident solitary wave with an
initial mass of 3 and an initial velocity of 1.25, giving an initial a of 2.4. It
is apparent from Fig. 5 that the mass is approaching a constant value, in
accordance with the theory, and the velocity seems to be decaying slowly,
again in accordance with the theory. Of course it would extremely difficult
to numerically simulate a sufficient number of scattering events to verify
l n - 1 ( Z ) decay, but Fig. 5 displays the same qualitative behavior predicted
by the theory. Finally Fig. 6 shows the behavior of the a parameter, which
is the ratio of the solitary wave mass to the solitary wave velocity. This
quantity is expected to grow with the number of scattering events—the
velocity is decreasing more rapidly than the mass. It is easily seen from
Fig. 6 that the numerical experiments support this conclusion.

Fig. 6. Alpha parameter as a function of time—strongly nonlinear regime.



D. The Critical Value a*

The previous two experiments show quite clearly the rather sharp
change in the propagation properties of the solitary wave as the a
parameter is changed from a = 1 to a = 2.4. One of the predictions of the
Kivshar theory is that a, the ratio of solitary wave amplitude to solitary
wave velocity, should decrease after a scattering event for small a and
increase during a scattering event for large a. This implies that there should
be a critical value of a, denoted by a*, at which a stays the same during
a scattering event. This critical a is where this change in behavior occurs.
In the case of delta function scatterers the paper of Kivshar gives a trans-
cendental equation for a*, which can be evaluated numerically to give
a* = 1.25. In this experiment we attempt to determine this critical value a*
via direct numerical solution of the partial differential equation. Figure 7
shows graphs of a vs. time for solitary waves with different initial values
of a. It is clear from this graph that for small initial values (<x= 1.0, 1.25)
a decreases, for large initial values (a =1.75, 2.0) a increases, and the
stationary point occurs at approximately a = 1.5. This value is in qualitative
agreement with the prediction of Kivshar et al. for the critical value. Of
course these numerical experiments were not conducted using delta function
scatterers, but rather with scatterers of some finite width (in this case hyper-
bolic secants). Simple heuristic arguments suggest that smoother scatterers

Fig. 7. Alpha vs. time for different initial values.
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The potential V(x) is, of course, entire and has no poles in the complex
plane.

It is clear from Fig. 8 (which shows a short segment of the disordered
potentials) that the potentials V(x) (shown in the solid line) and V(x) (in
points) are quite similar. However the amount of radiation generated by
V(x), the entire function, is marked less than the amount of radiation

Here the y, and x, are chosen to be the same realization as in the hyper-
bolic secant potential. The constants n and B were chosen to make the
Gaussian have the same width as the hyperbolic secant-

As before yi and xi are uniformly distributed random variables. This poten-
tial inherits the analyticity properties of the hyperbolic secant, and is
analytic in a strip of width n/2. We then generate a second potential

should increase the value of a*, so we expect that the main discrepancy
between the predicted value and the numerically determined value is due to
the finite width of the scatterers.

E. Scattering and Analyticity Properties

In previous work(2) it was shown that the analyticity properties of the
scatterer play an important role in the case of strongly nonlinear scattering.
In particular it was shown that the amount of dispersive radiation excited
should be significantly less for (four example) scatterers which are entire
functions (when considered as functions of a complex variable) rather than
meromorphic functions. In this experiment we attempt to verify this con-
clusion numerically.

For this experiment we compare the scattering of an incident solitary
wave by two different potentials. The first is, as in previous experiments,
made up of a number of randomly placed hyperbolic secant scatterers:
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Fig. 8. Comparison—entire and meromorphic potentials.

generated by the meromorphic potential V(x). Figure 9 shows a graph
comparing the amount of mass in the solitary wave as a function of time.
The solitary wave which is moving through the entire potential loses mass
much more slowly than the solitary wave which is moving through the
meromorphic potential. Of course this type of behavior is well known in

Fig. 9. Solitary wave mass—entire and meromorphic scatterers.



linear scattering theory, where things like the large wavenumber behavior
of (for instance) reflection and transmission coefficients sensitive to the
analyticity properties of the scattering potential. While similar in spirit to
these linear results, the nonlinear result is somewhat different. It arises, for
example, for large amplitude solitary waves at fixed wavenumber (velocity).
The typical linear result is for large wavenumber, and of course does not
depend on the amplitude.

F. Large Time Behavior and Solitary Wave Capture

The theory outlined previously in the paper is valid for weak poten-
tials—it is expected to be valid when e « b2, the kinetic energy of the inci-
dent solitary wave is much less than the height of the potential barrier. This
theory predicts that, in the strongly nonlinear regime, the velocity of the
solitary wave should decay slowly. When the solitary wave velocity has
decayed sufficiently so that it is of comparable size to the background
potential ( e = b 2 ) the theory outlined in the previous section is no longer
valid, since the effects of the nonlinearity and the effects of the background
potential are of comparable size. In this situation one expects to observe
different phenomena, including the capture of or total reflection of the
solitary wave by the scatterers. This is illustrated in Fig. 10 which depicts
the trapping of a solitary wave via repeated reflections from a pair of

Fig. 10. Velocity as a function of time—solitary wave capture.
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relatively large scatterers. The solitary wave propagates and decelerates
until it is totally reflected by a scatterer (at a time slightly before t = 10 5 ) .
The solitary wave then propagates backwards through the medium, still
losing velocity, until it is reflected a second time by another scatterer, and
begins travelling forward again. This process is expected to continue until
the solitary wave has radiated all of its kinetic energy away and becomes
trapped in some local minima of the background potential.

IV. CONCLUSIONS

In this work we have made a careful numerical study of solitary wave
scattering by a disordered collection of weak scatterers. By working in a
reference frame which is centered on and moving with the solitary wave we
are able to simulate a large number of scattering events efficiently, which
allows us to verify the main prediction of the existing theory—the existence
of two parameter regimes. The first, which is valid for solitary waves whose
binding energy is much smaller than their kinetic energy, consists of nearly
linear behavior, with the mass of the solitary wave demonstrating exponen-
tial decay, and the velocity approaching a constant value. The second
regime is a strongly nonlinear regime where the velocity of the solitary
wave shows an anomalously slow decay, while the mass of the solitary
wave approaches a constant. When the velocity has decayed sufficiently the
scatterers can no longer be considered weak and other phenomena such as
capture or total reflection of the solitary wave are observed. It is worth not-
ing that such phenomena are expected to be well described by the widely
known collective coordinate theory.

Since the solitary wave appears to always be eventually captured this
nonlinear regime could be said to exhibit a form of localization, however
because of the anomalously slow decay of the velocity (like I n - 1 ) the
localization length can be quite large, and is exponentially large in the
amplitude for solitary waves of large initial amplitude. Similar suppression
of localization by nonlinearity has been observed by Devillard and
Souillard(6) in a time-independent NLS equation.

The work could easily be extended to other models. One model which
would be interesting to consider is that of a disordered KdV equation. In
the recent experiments of Hopkins, Keat, Meegan, Zhang and Maynard(11)

on localization of third sound waves in superfluid helium they observe in
laboratory experiments a marked suppression of localization by nonlinear
effects. When the third sound waves are of small amplitude the decay of the
third sound is exponential with distance into the medium. However at large
amplitude the decay is found to be sub-exponential. Since third sound waves
in superfluid helium are commonly modelled by the KdV equation(5,12,1)
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the understanding of solitary wave propagation in a disordered KdV would
provide a great deal of insight into these experiments. The author and
Gamier are currently considering this problem.

The theory which we have attempted to verify here is, of course, still
at the level of a formal calculation and has not been made rigorous. There
is some hope, however, that the present formal calculation could be
rigorously justified. In recent work Buslaev and Perelman(4) and Softer and
Weinstein(16) have rigorously treated the radiative damping of bound states
in nonlinear Hamiltonian wave equations which are perturbations of linear
wave equations. It is possible(17) that these techniques could be applied to
the problem outlined here, with the linearized NLS operator playing the
role of the underlying linear wave equation. The recent work of Gamier(10)

has also made significant progress towards making this theory rigorous.
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